Lockheed Martin: Inventing the Telescope of the Future - MakerBot Case Study

3D Printing Expert

Posted on July 11 2017

Discover How Lockheed Martin’s Engineers Rely on MakerBot Printers to Develop New Designs for Space Telescopes

 

Making New Technologies Viable through Faster Iterative Design

Lockheed Martin is a world-renowned company with a long legacy of achievements in aerospace, defense, and emerging technologies. For this global leader, tackling complex challenges, pushing the limits of scientific exploration, and devising innovative solutions are all part of its DNA. So it’s no surprise that the U.S. Defense Advanced Research Projects Agency (DARPA) selected an elite team of scientists and engineers from Lockheed Martin’s Advanced Technology Center (ATC) to create a potentially revolutionary design for a new, futuristic space telescope.

Because of traditional optical systems, today’s space telescopes are heavy, astronomically expensive, and bulky. In line with the project’s requirements, DARPA’s version would have to be lighter, and less expensive to send into space. It would also have to be adaptable and even more powerful. As the ATC team soon discovered, the fundamental principles of telescope design would need to be reconceived.

To tackle the challenge, the ATC needed to create a new, vastly condensed optical technology. It also needed a cost-effective, fast means of creating prototypes that would help the team understand how to implement this technology. With the help of researchers at the University of California at Davis, the ATC co-developed SPIDER, or the Segmented Planar Imaging Detector for Electro-optical Reconnaissance. And with the help of MakerBot’s professional solutions, the team rapidly and easily iterated on designs for prototypes.

 

3D-printed prototype of disk for SPIDER, showing a radial configuration of lenslets.

Accelerating Scientific Discovery

MakerBot’s professional solutions have allowed Guy Chriqui, Senior Research Engineer at the ATC, and Sutyen Zalawadia, Mechatronics Engineer, to quickly accelerate the iterative design process and cost-effectively prototype for SPIDER on their own. Outsourcing any of this work just wasn’t an option, as Chriqui explains: “We would get quotes in the thousands of dollars with an eight-week lead time for just one version of a model — I can’t imagine what 14 versions would cost.”

Chriqui and his team also have a cutting-edge machine shop in house, but the MakerBot 3D printers nearby allow the SPIDER team to iterate new versions in only hours. Plus, since the ATC has many sensitive projects, outsourcing work to contractors would not just slow down projects and increase costs, it would also require approvals and paperwork that could be avoided by turning to a MakerBot a few feet away.

By accelerating the design process, MakerBot Desktop 3D printers have bolstered scientific experiments, enabling more tests, more insights, and more potential breakthroughs in a shorter period of time. Moving more quickly from ideation to iteration and refinement gives engineers a big competitive advantage, helping deliver better solutions faster to clients.

No stranger to MakerBot, the ATC used the Replicator 2 and 2X to prototype parts and tooling for the James Webb Space Telescope back in 2013. They have since updated with the Replicator (5th Gen), Mini, Z18, and now the Replicator+ and Replicator Mini+ — or “the full MakerBot lineup,” Chriqui notes jokingly. “They’re basically running non-stop, all day long, and have enabled a lot of really quick iterations for parts that may have otherwise slowed completion of the final product.”

Beyond prototyping SPIDER arrays, the team’s Replicator Mini is also an effective field 3D printer for when the engineers travel to different testing facilities. “When we test smaller rockets, the nose cones blow off and are mostly unrecoverable, so we bring the Mini to the launch site and print different nose cones on the spot,” Zalawadia elaborates.

MakerBot’s filament has also proved beneficial. With new materials like MakerBot Tough PLA, ATC’s engineers can make entirely new products and applications possible, such as high-quality snapping joints Chriqui calls flextures. Whereas these flexible hinges and joints would normally fail when printed as PLA, they function well with Tough PLA, allowing the team to print prototypes that are closer to the final product. In testing the SPIDER technology, the team also found that MakerBot True Black PLA at 100-percent infill is perfect for absorbing light. Good light absorption is important so there is no light leakage that can affect optical tests. They also use neon MakerBot PLA filament to highlight specific parts of a print.

When Chriqui and Zalawadia had the opportunity to test the MakerBot Print platform, they appreciated its added efficiency, especially for assisting coworkers with ad hoc 3D printing requests. The Auto Arrange and multi-printer control features were used for setting up different projects on multiple build plates and sending them to different printers. With MakerBot Print’s Native CAD feature, ATC engineers can also work in their preferred program and file format, without the hassle of creating STLs or converting files, and then share files to easily collaborate.

 

If you would like to read more about how MakerBot’s printers has made a difference in aerospace please click here for the full case study by MakerBot.

 

More Posts

0 comments

Leave a comment

All blog comments are checked prior to publishing

Stay informed with the latest trends, technology and promos in the 3D Printing world!

Enter your email for industry updates and exclusive promotions on all your favorite products!

Search our store